236 research outputs found

    Discrete Factorization Machines for Fast Feature-based Recommendation

    Full text link
    User and item features of side information are crucial for accurate recommendation. However, the large number of feature dimensions, e.g., usually larger than 10^7, results in expensive storage and computational cost. This prohibits fast recommendation especially on mobile applications where the computational resource is very limited. In this paper, we develop a generic feature-based recommendation model, called Discrete Factorization Machine (DFM), for fast and accurate recommendation. DFM binarizes the real-valued model parameters (e.g., float32) of every feature embedding into binary codes (e.g., boolean), and thus supports efficient storage and fast user-item score computation. To avoid the severe quantization loss of the binarization, we propose a convergent updating rule that resolves the challenging discrete optimization of DFM. Through extensive experiments on two real-world datasets, we show that 1) DFM consistently outperforms state-of-the-art binarized recommendation models, and 2) DFM shows very competitive performance compared to its real-valued version (FM), demonstrating the minimized quantization loss. This work is accepted by IJCAI 2018.Comment: Appeared in IJCAI 201

    On the performance of a mixed RF/MIMO FSO variable gain dual-hop transmission system

    Get PDF
    In this work, we propose a mixed radio frequency (RF) and multiple-input-multiple-output (MIMO) free-space optical (FSO) system based on a variable-gain dual-hop relay transmission scheme. The RF channel is modeled by Rayleigh distribution and Gamma–Gamma turbulence distribution is adopted for the MIMO FSO link, which accounts for the equal gain combining diversity technique. Moreover, new closed-form mathematical formulas are obtained including the cumulative distribution function, probability density function, moment generating function, and moments of equivalent signal-to-noise ratio of the dual-hop relay system based on Meijer’s G function. As such, we derive the novel analytical expressions of the outage probability, the higher-order fading, and the average bit error rate for a range of modulations in terms of Meijer’s G function. Furthermore, the exact closed-form formula of the ergodic capacity is derived based on the bivariate Meijer’s G function. The evaluation and simulation are provided for system performance, and the effect of spatial diversity technique is discussed as well

    Beyond 5G Networks: Integration of Communication, Computing, Caching, and Control

    Get PDF
    In recent years, the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks. Such challenges can be potentially overcome by integrating communication, computing, caching, and control (i4C) technologies. In this survey, we first give a snapshot of different aspects of the i4C, comprising background, motivation, leading technological enablers, potential applications, and use cases. Next, we describe different models of communication, computing, caching, and control (4C) to lay the foundation of the integration approach. We review current state-of-the-art research efforts related to the i4C, focusing on recent trends of both conventional and artificial intelligence (AI)-based integration approaches. We also highlight the need for intelligence in resources integration. Then, we discuss integration of sensing and communication (ISAC) and classify the integration approaches into various classes. Finally, we propose open challenges and present future research directions for beyond 5G networks, such as 6G.Comment: This article has been accepted for inclusion in a future issue of China Communications Journal in IEEE Xplor

    On the design evolution of hip implants: A review

    Get PDF
    This manuscript reviews the development of femoral stem prostheses in the biomedical field. After a brief introduction on the development of these prostheses and the associated problems, we describe the standard design of these systems. We review the different materials, constructions, and surfaces used in the development of femoral stems, in order to solve and avoid various problems associated with their use. Femoral stem prostheses have undergone substantial changes and design optimizations since their introduction. Common materials include stainless steel, cobalt–chromium alloy, titanium alloy, and composites. The structural development of femoral stem prostheses, including their length, shape, porosity, and functional gradient construction, is also reviewed. The performance of these prostheses is affected not only by individual factors, but also by the synergistic combination of multiple effects; therefore, several aspects need to be optimized. The main purpose of this study is to summarize various strategies for the material and construction optimization of femoral stem prostheses, and to provide a reference for the combined optimization of their performance. Substantial research is still needed to develop prostheses emulating the behavior of a real human femoral stem

    Water management affects arsenic and cadmium accumulation in different rice cultivars

    Get PDF
    Paddy rice (Oryza sativa L.) is a staple food and one of the major sources of dietary arsenic (As) and cadmium (Cd) in Asia. A field experiment was conducted to investigate the effects of four water management regimes (aerobic, intermittent irrigation, conventional irrigation and flooding) on As and Cd accumulation in seven major rice cultivars grown in Zhejiang province, east China. With increasing irrigation from aerobic to flooded conditions, the soil HCl-extractable As concentrations increased significantly and the HCl-extractable Cd concentrations decreased significantly. These trends were consistent with the As and Cd concentrations in the straw, husk and brown rice. Water management both before and after the full tillering stage affected As and Cd accumulation in the grains. The intermittent and conventional treatments produced higher grain yields than the aerobic and flooded treatments. Cd concentrations in brown rice varied 13.1-40.8 times and As varied 1.75-8.80 times among the four water management regimes. Cd and As accumulation in brown rice varied among the rice cultivars, with Guodao 6 (GD6) was a low Cd but high-As-accumulating cultivar while Indonesia (IR) and Yongyou 9 (YY9) were low As but high-Cd-accumulating cultivars. Brown rice Cd and As concentrations in the 7 cultivars were significantly negatively correlated. The results indicate that As and Cd accumulated in rice grains with opposite trends that were influenced by both water management and rice cultivar. Production of 'safe' rice with respect to As and Cd might be possible by balancing water management and rice cultivar according to the severity of soil pollution.Paddy rice (Oryza sativa L.) is a staple food and one of the major sources of dietary arsenic (As) and cadmium (Cd) in Asia. A field experiment was conducted to investigate the effects of four water management regimes (aerobic, intermittent irrigation, conventional irrigation and flooding) on As and Cd accumulation in seven major rice cultivars grown in Zhejiang province, east China. With increasing irrigation from aerobic to flooded conditions, the soil HCl-extractable As concentrations increased significantly and the HCl-extractable Cd concentrations decreased significantly. These trends were consistent with the As and Cd concentrations in the straw, husk and brown rice. Water management both before and after the full tillering stage affected As and Cd accumulation in the grains. The intermittent and conventional treatments produced higher grain yields than the aerobic and flooded treatments. Cd concentrations in brown rice varied 13.1-40.8 times and As varied 1.75-8.80 times among the four water management regimes. Cd and As accumulation in brown rice varied among the rice cultivars, with Guodao 6 (GD6) was a low Cd but high-As-accumulating cultivar while Indonesia (IR) and Yongyou 9 (YY9) were low As but high-Cd-accumulating cultivars. Brown rice Cd and As concentrations in the 7 cultivars were significantly negatively correlated. The results indicate that As and Cd accumulated in rice grains with opposite trends that were influenced by both water management and rice cultivar. Production of 'safe' rice with respect to As and Cd might be possible by balancing water management and rice cultivar according to the severity of soil pollution
    corecore